

A Protecting Group Free Synthesis of (\pm) -Neostenine via the [5 + 2]**Photocycloaddition of Maleimides**

Michael D. Lainchbury, Marcus I. Medley, Piers M. Taylor, Paul Hirst, Wolfgang Dohle, and Kevin I. Booker-Milburn*

School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, U.K.

k.booker-milburn@bristol.ac.uk

Received May 23, 2008

A concise, linear synthesis of the *Stemona* alkaloid (\pm) -neostenine is reported. Key features include an organocopper-mediated bislactone C_2 -desymmetrization for the stereoselective construction of the cyclohexane-lactone C,D-rings. The assembly of the fused pyrrolo[1,2-a] azepine core was achieved by application of a [5 + 2] maleimide photocycloaddition. A custom FEP flow reactor was used to successfully overcome the scale limitations imposed by a classical immersion well batch reactor. The synthesis was completed in 14 steps from furan, in 9.5% overall yield, without the use of any protecting groups.

Introduction

The Stemona alkaloids are a diverse family of natural products isolated from Stemonaceae plant species. Nearly all members of this family contain the pyrrolo[1,2-a]azepine or perhydroazaazulene core. Unelaborated examples include stemoamide 1 and stemonine 2; the latter contain a laterally fused butyrolactone ring that is prevalent throughout the Stemona alkaloids. The stenine group contains more intricate examples encompassing stenine **3** and pentacyclic member tuberostemonine **4**.¹ In 2003, neostenine 5 was isolated² from Stemona tuberosa and shown to be of the same stereogenicity as the previously characterized neotuberostemonine 6 and bisdehydroneotuberostemonine 7 (Figure 1).

For centuries, extracts of a variety of Stemonaceae plant species have been utilized in Chinese and Japanese traditional medicine as cough treatments for human diseases such as tuberculosis and bronchitis. The plants have also been used as antihelminthic agents in the treatment of parasitic infestation in humans and livestock. Subsequent pharmacological studies have demonstrated that 4 had an effect on the motility of three

FIGURE 1. Representative examples of the Stemona alkaloids.

different species of helminthic worms.³ Further studies on neuromuscular transmission in crayfish showed that 4 depressed glutamate-induced responses at levels similar to established inhibitors.⁴ Significantly, Lin² reported that 5 and 6 possessed antitussive activity when tested against guinea pig models, thus identifying these as the likely active agents in Stemonaceae preparations used as cough suppressants. The stenine class of alkaloids has captured the attention of synthetic chemists over the last two decades, due in no small part to the intriguing and challenging array of seven contiguous stereocenters within a fused tetracyclic system. In 1990, Hart and Chen⁵ published

⁽¹⁾ Pilli, R. A.; Ferreira de Oliveira, M. d. C. Nat. Prod. Rep 2000, 17, 117. (2) (a) Chung, H.-S.; Hon, P.-M.; Lin, G.; But, P. P.H.; Dong, H. *Planta Med.* **2003**, *69*, 914. (b) Leung, P. H. H.; Zhang, L.; Zuo, Z.; Lin, G. *Planta Med.* **2006**, *72*, 211.

⁽³⁾ Götz, M.; Strunz, G. M. Tuberostemonine and Related Compounds: The Chemistry of Stemona Alkaloids. In Alkaloids, vol. 9, ed. Wiesner, G. Ed.; MTP, International Review of Sciences: Organic Chemistry, Series One; Butterworths: London, 1973; pp 143–160.
(4) Shinozaki, H.; Ishida, M. *Brain Res.* 1985, *334*, 33.

IOC*Featured* Article

the first total synthesis of (\pm) -stenine which was followed by successful syntheses from Morimoto,⁶ Padwa,⁷ and Wipf.⁸ In 2002, Wipf reported the total synthesis of (-)-tuberostemonine 4, thus detailing the first successful approach to a pentacyclic member of the stenine family.9 In 2005, Aubé reported an outstanding nine-step synthesis of (\pm) -stenine involving an elegant Diels-Alder/intramolecular Schmidt domino reaction strategy.¹⁰ This group has very recently been able to modify their approach to deliver the first total synthesis of (\pm) neostenine 5.¹¹ In 2001, we embarked on a program to deliver neotuberostemonine 6 by a strategy that was to proceed via the use of an oxo derivative of neostenine 5 as an advanced intermediate.¹² At the time, 5 had not been identified, but following its isolation in 2003 it was evident that it would be within reach of our ongoing route to 6.

For some time, we have had an interest in the application of organic photochemistry to the synthesis of natural products. While investigating a [2 + 2] photocycloaddition reaction of maleic anhydride derivatives,¹³ we uncovered a powerful intramolecular [5 + 2] photocycloaddition of alkyl maleimides **8** which led directly to the pyrrolo[1,2-a] azepine **10** rather than the expected [2 + 2] adduct.^{14,15} The reaction is general for a wide range of substrates, and use of chloro- or alkoxy-substituted maleimides 9 leads to further incorporation of useful functionality into the resulting azepines. Recent mechanistic studies of this process, using tunable UV lasers and time dependent-DFT, have led us to propose a singlet mechanism via cycloaddition of the diradical species 11.¹⁶ The ability of this reaction to deliver complex polycyclic fused azepine systems, exemplified in the cycloaddition of 12 to 13, led us to investigate the application of it in alkaloid synthesis.¹⁷ In particular, the all-

(7) (a) Ginn, J. D.; Padwa, A. Org. Lett. 2002, 4, 1515. (b) Padwa, A.; Ginn, J. D. J. Org. Chem. 2005, 70, 5197.

- (8) (a) Wipf, P.; Kim, Y.; Goldstein, D. M. J. Am. Chem. Soc. 1995, 117, 11106. (b) Goldstein, D. M.; Wipf, P. Tetrahedron Lett. 1996, 37, 739.
- (9) (a) Wipf, P.; Spencer, S. R.; Takahashi, H. J. Am. Chem. Soc. 2002, 124, 14848. (b) Wipf, P.; Spencer, S. R. J. Am. Chem. Soc. 2005, 127, 225.
- (10) (a) Aubé, J.; Milligan, G. L. J. Am. Chem. Soc. **1991**, 113, 8965. (b) Aubé, J.; Milligan, G. L.; Mossman, C. J. J. Org. Chem. **1992**, 57, 1635. (c) Milligan, G. L.; Mossman, C. J.; Aubé, J. J. Am. Chem. Soc. 1995, 117, 10449. (d) Desai, P.; Schildknegt, K.; Agrios, K. A.; Mossman, C.; Milligan, G. L.; Aubé, J. J. Am. Chem. Soc. 2000, 122, 7226. (e) Zeng, Y.; Reddy, S.; Hirt, E.; Aubé, J. Org. Lett. 2004, 6, 4993. (f) Zeng, Y.; Aubé, J. J. Am. Chem. Soc. 2005, 127, 15712.

(11) Frankowski, K. J.; Golden, J. E.; Zeng, Y.; Lei, Y.; Aubé, J. J. Am. Chem. Soc. 2008, 130, 6018.

(12) Booker-Milburn, K. I.; Hirst, P.; Charmant, J. P. H.; Taylor, L. H. J. Angew. Chem., Int. Ed. 2003, 42, 1642.

(13) (a) Booker-Milburn, K. I.; Cowell, J. K. Tetrahedron Lett. 1996, 37, 2177. (b) Booker-Milburn, K. I.; Cowell, J. K.; Delgado Jiménez, F.; Sharpe, A.; White, A. J. Tetrahedron 1999, 55, 5875. (c) Booker-Milburn, K. I.; Delgado Jiménez, F.; Sharpe, A. Tetrahedron 1999, 55, 5889.

(14) (a) Booker-Milburn, K. I.; Costin, N. J.; Dainty, R. F.; Patel, D.; Sharpe, A. Tetrahedron Lett. 1998, 39, 7423. (b) Booker-Milburn, K. I.; Anson, C. E.; Clissold, C.; Costin, N. J.; Dainty, R. F.; Murray, M.; Patel, D.; Sharpe, A. Eur. J. Org. Chem. 2001, 1473.

(15) For related phthalimide photochemistry, see: (a) Mazzocchi, P. H.; Bowen, M. J.; Narain, N. K. J. Am. Chem. Soc. 1977, 99, 7063. (b) Mazzocchi, P. H.; Minamikawa, S.; Bowen, M. J. J. Org. Chem. 1978, 43, 3079. (c) Mazzocchi, P. H.; Minamikawa, S.; Wilson, P. J. Org. Chem. 1979, 44, 1186. (d) Mazzocchi, P. H.; Wilson, P.; Khachik, F.; Klingler, L.; Minamikawa, S. J. Org. Chem. 1983, 48, 2981

(16) Davies, D. M. E.; Murray, C.; Berry, M.; Orr-Ewing, A. J.; Booker-Milburn, K. I. J. Org. Chem. 2007, 72, 1449.

(17) Dudin, L. F.; Booker-Milburn, K. I.; Anson, C. E.; Guile, S. D. Org. Lett. 2001, 3, 3005.

SCHEME 1. Retrosynthetic Analysis of (\pm) -Neostenine 5 [5+2] Photocycloaddition of Maleimides

cis stereochemistry observed for 13 made this photochemical strategy ideal as a key step in an approach to 5 and 6. Our proposed retrosynthesis of neostenine involved an end game where the conjugated keto-amide functionality in the advanced tetracycle 14 would be reduced/deoxygenated and the lactone ring methylated to deliver 5. Previously, we have described synthetic routes toward 7-desmethylasteriscanolide, pogostol, and kessane¹⁸ which were devoid of standard protection/ deprotection protocols, and so we were particularly keen that our stenine studies adhered to the same principles.¹⁹

We proposed that construction of 14 would involve photocycloaddition of the maleimide-cyclohexene-lactone 15, which in turn would be readily available from reduction of the acid 16 and Mitsunobu coupling of maleimide with its corresponding alcohol. Although a number of Diels-Alder/lactonization strategies were envisioned for the synthesis of 16, it was considered that these would not improve upon existing methods used in previous total syntheses of related stenine congeners. Instead, we chose to attempt the preparation of 16 via a novel approach involving the anti-selective organocopper mediated S_N2' ring opening of C_2 -symmetric bislactone 17. A particularly appealing entry to 17 was conceived via acid-catalyzed bislactonization of the diacid 18 (Scheme 1).

Results and Discussion

Multigram quantities (>50 g) of diol (\pm)-19 were readily available following Paquette's²⁰ sequential procedure for the Diels-Alder cycloaddition between furan and fumaryl chloride followed by reduction with LiAlH₄. Reaction of **19** with 2 equiv of MsCl followed by displacement with KCN gave dinitrile 20

^{(5) (}a) Cheng, C. Y.; Hart, D. J. Org. Chem. 1990, 55, 6236. (b) Cheng, (6) (a) Chernic J. J. Org. Chem. 1993, 58, 3840.
 (6) (a) Morimoto, Y.; Nishida, K.; Hayashi, Y.; Shirahama, H. Tetrahedron C.

Lett. 1993, 34, 5773. (b) Morimoto, Y.; Iwahashi, M. Synlett 1995, 1221. (c) Morimoto, Y.; Iwahashi, M.; Nishida, K.; Hayashi, Y.; Shirahama, H. Angew. Chem., Int. Ed. Engl. **1996**, 35, 904. (d) Morimoto, Y.; Iwahashi, M.; Kinoshita, T.; Nishida, K. Chem. Eur. J. **2001**, 7, 4107.

⁽¹⁸⁾ Protecting group free approaches to 7-desmethylasteriscanolide: (a) Booker-Milburn, K. I.; Cowell, J. K.; Harris, L. J. *Tetrahedron* **1997**, *53*, 12319. Pogostol and kessane: (b) Booker-Milburn, K. I.; Jenkins, H.; Mohr, P. Org. Lett. 2003. 5, 3309.

⁽¹⁹⁾ For a recent example of the benefits of protecting group free strategies in complex alkaloid synthesis, see: Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404.

⁽²⁰⁾ Paquette, L. A.; Kravetz, T. M.; Charumilind, P. Tetrahedron 1986, 42, 1779.

SCHEME 2. Synthesis of the C_2 -Symmetric Bislactone 17^a

^{*a*} Reagents and conditions: (a) THF, 0 °C, 2 h then LiAlH₄, 0 °C to rt, 48 h, 72% (ref 20); (b) (1) MsCl, Et₃N, THF, 25 °C, then KCN, DMSO, 100 °C, 84% overall; (c) KOH, H₂O, 100 °C, 93%; (d) *p*-TSA, PhMe, reflux, 93%; (e) H₂SO₄ (6 M), 100 °C, 2 h, 45%.

in 84% overall yield. Basic hydrolysis of 20 furnished key diacid 18 in good yield. We were then at the stage to examine the key acid-catalyzed bislactonization and were pleasantly surprised to see the clean formation of 17 on our first attempt with catalytic p-TSA on reflux in toluene. After optimization, the resulting highly crystalline bislactone could be consistently isolated in yields greater than 90%. The mechanism likely proceeds via protonation of the dihydrofuran oxygen followed by selective S_Ni cyclization of the anti-carboxylate and further lactonization of the resulting syn-hydroxy acid. It was also found that this could be achieved in one step from 20 by strong acidpromoted nitrile hydrolysis and concomitant cyclization of 18 in situ. Unfortunately, this attractive one-step procedure was not economic on scale-up (>3 mmol) as significant amounts of unidentified resinous material were formed from acid-catalyzed side reactions.

The subsequent step involved the attempted anti-selective organocopper-mediated S_N2' ring opening of 17 using conditions reported by Grieco,²¹ Curran,²² and Helmchen,²³ which typically employ 2-3 equiv of EtMgCl/CuBr·DMS and an unusual 2:1 solvent mixture of THF/DMS. The high crystallinity of 17 was a cause for concern, and even after it was ground into a fine powder it appeared to be completely insoluble in a range of solvents at room temperature. After a short optimization study, however, it was found that when a slurry of 17 was reacted with 10 equiv of EtMgCl/CuBr·DMS (1:1), the ring-opened and desymmetrized lactone-acid 16 was obtained as an 8.5:1 mixture of anti/syn isomers (Table 1, entry 1). Although these conditions were reproducible on a 2 mmol scale, we had great difficulty extending these to a larger scale, and >10 mmol resulted in incomplete reactions. DMPU (4 equiv) proved to be a useful substitute for DMS and gave good yields (81%) and a slightly improved anti/syn ratio (9.7:1; entry 6). Unfortunately, this variation also proved capricious on scale up, and complete removal of DMPU from product proved difficult. By reducing the amount of DMS cosolvent and equivalents of EtMgCl/CuBr·DMS an interesting trend was observed and a

JOC Featured Article

 TABLE 1. Optimization of Organocopper Ring-Opening of Bislactone 17

Distactone 17					
	EtMg CuBi	3Cl Me ₂ S	0 , H H'' , H + +	0 0 H"	н ````\ F 0
THF/additive, -20 °C OH OH					
1/			16 anti	16 Syn	
entry	EtMgCl (molar equiv)	CuBr•Me ₂ S (molar equi)	additive	yield	anti/svn
entry	(mona equit)	(moral equi)	(monu equit)	(,0)	unuitojn
1	10	10	Me ₂ S (cosolvent)	89	8.5/1
2	3	3	Me_2S (4)	85	12.2/1
3	3	3	$Me_2S(2)$	84	13.8/1
4	3	3	$Me_2S(1)$	86	14.2/1
5	3	3	none	94	15.6/1
6	3	3	DMPU	81	9.7/1

solution to scale up was achieved. Use of only 4 equiv of DMS gave a superior ratio of 12.2:1, which improved further to 14.2:1 when only 1 equiv was used (entries 2 and 4). Portionwise addition of solid 17 to a stirred solution of EtMgCl/CuBr·DMS (3 equiv) at -20 °C in the *absence* of DMS gave an isolated yield of 16 of 94% with an anti/syn ratio of 15.6:1 (entry 5). These latter conditions could be reliably applied to the reaction of 17 on scales of 30 mmol. This was a most surprising result in view of the apparent nonexistent solubility of 17 in pure THF at even room temperatures. On addition of solid 17 to the organocopper solution at -20 °C, the initially formed suspension is digested rapidly by reaction. Our experience with this reaction clearly demonstrates that the selectivity of the organocopper species resulting from EtMgCl/CuBr·DMS is significantly increased when the Me₂S cosolvent is omitted. It is possible that excess DMS (or DMPU) competes with the lactone rings in 17 for coordination to the Cu center, thus disrupting the anti mode of $S_N 2'$ ring opening.

Selective reduction of the carboxylic acid moiety of 16 in the presence of the lactone could be achieved by conversion to the mixed anhydride with ethyl chloroformate followed by reduction with NaBH4.24 In general, this sequence worked in consistently high yields, although prolonged reaction times with NaBH₄ led to decreased yields of **21** due to lactone ring opening. In preparation for the key [5 + 2] photocycloaddition, hydroxy lactone 21 was coupled to three different maleimides using Mitsunobu conditions (Scheme 3). This gave the three photosubstrates 22a-c in moderate to good yield. Dimethyl substrate 22b was chosen simply as a model, delivering a photoproduct that ought to be resistant to further photoreactions. The parent 22a and the dichloro derivatives were the key subtrates for incorporation into the rest of the synthesis. Irradiation in a Pyrex immersion well photoreactor (125 W medium-pressure Hg lamp) with constant monitoring (TLC) of all three substrates led to the desired tetracyclic [5 + 2] photocycloaddition products 23a-c in varying yields. Dimethyl adduct 23b was formed in 75% yield as a single diastereomer, and X-ray crystallography confirmed that the relative stereochemistry was the same as that found in neostenine. The parent system 23a was formed but in a meager yield (11%) with no recovery of starting material. This was not unexpected, as our previous experience with unsubstituted maleimides has shown that the [5 + 2] products are susceptible to further reactions including [2 + 2] dimerization and photodegradation. This unfortunately severely limits the use of the parent maleimides in synthesis and led us to investigate dichloromaleimides as alternatives. In our prior experience, the

⁽²¹⁾ Grieco, P. A.; Srinivasan, C. V. J. Org. Chem. 1981, 46, 2591.

⁽²²⁾ Curran, D. P.; Chen, M. H.; Leszcweski, D.; Elliot, R. L.; Rakiewiecz, D. M. J. Org. Chem. 1986, 51, 1612.

⁽²³⁾ Bergner, E. J.; Helmchen, G. Eur. J. Org. Chem. 2000, 6, 419.

⁽²⁴⁾ N'Zoutani, M. A.; Pancrazi, A.; Ardisson, J. Synlett 2001, 769.

SCHEME 3. Synthesis of Cycloaddition Precursors 22a-c and Optimization of Key Photocycloaddition by a Custom FEP Flow Reactor^a

^{*a*} Reagents and conditions: (a) EtOCOCI, Et₃N, then NaBH₄; (b) maleimide/dimethylmaleimide/dichloromaleimide/Ph₃P, DEAD, THF, -78 °C to rt; (c) **22a–c**, *hv*, 125 W Hg lamp, Pyrex, CH₃CN; (d) **22c**, *hv*, 400 W Hg lamp, Pyrex 15-loop FEP flow reactor, CH₂Cl₂.

dichloro [5 + 2] adducts generally undergo slower photodegradation than their parent derivatives.

Initially, we were pleased to find that irradiation of **22c** gave 40–60% yields of the key cycloadduct **23c**, although all starting material had been consumed. These initial key test reactions were performed on a 50 mg scale in a 100 mL immersion well batch photoreactor using a 125 W medium-pressure Hg lamp. When scaled up to >100 mg batches, the yields of **23c** plummeted to below 20%, with total consumption of starting material. Attempts to carry out the reactions with larger but more dilute batches were met with equally disappointing results. This left us with the practical dilemma of proceeding with the synthesis of neostenine with a key reaction constrained to a 50 mg scale. This was clearly an untenable strategy as it would have involved multiple batch reactions and the loss of 40% of the photoprecursor **22c**.

During the evolution of this synthesis, we developed a novel flow reactor for continuous photochemical synthesis.²⁵ This reactor consisted of multiple loops of narrow bore fluorinated ethylene polymer (FEP) tubing wrapped tightly around a Pyrex water cooled immersion well containing a 125-400 W mediumpressure Hg lamp. This reactor proved capable of synthesizing maleimide/hex-1-yne [2 + 2] photoadducts on scales of >500 g per day using photolysates of up to 0.4 M. With this flow, reactor residence time (i.e., time of irradiation in reactor) could be controlled by flow rate and by reactor volume (length of FEP tubing in contact with UV lamp). We speculated that a custom flow reactor could be constructed which would allow the photolysis of 22c to key intermediate 23c on preparatively desirable scales. More specifically, it was felt that if a dilute solution of 22c were to enter a low volume reactor at a high flow rate then the residence time would be kept very low, thus minimizing the degradation of product as it forms. If this were coupled with a high power UV source (400 W), then an acceptable balance of conversion vs degradation would be achieved that would be amenable to the scales required for a linear total synthesis.

FIGURE 2. Custom high flow-rate/low volume continuous photochemical FEP reactor for the [5 + 2] photocycloaddition of maleimide **22c**.

After a great deal of experimentation, we found that construction of a reactor consisting of between 10 and 20 loops of FEP tubing wrapped around a custom water-cooled Pyrex immersion well gave promising results (Figure 2). After a number of optimization runs, we found that irradiation (400 W Hg lamp) of a 0.001 M solution of **22c** (2.1 g) in CH₂Cl₂ flowed through a 15-loop reactor (2 m FEP; 10 mL volume) at a flow rate of 11 mL min⁻¹ allowed the isolation of 63% of 23c and the recovery of 20% unreacted 22c. This was a real breakthrough and enabled the synthesis of 1.3 g of the key [5 + 2]photoadduct in a single 9 h run. The importance of this cannot be overstated: to process 2.1 g of 22c in batch at anywhere near this conversion would have required 42 successive conventional immersion well irradiations, each on a maximum scale of 50 mg and with no recovery of starting material. We believe that high flow rate/low volume reactors configured in this way will prove generally useful for the scale up of sensitive photochemical reactions.

With a reliable, scale-tolerant route to 23c now secured, we proceeded to the completion of neostenine, which involved selective reduction/deoxygenation of the B-ring functionality and stereoselective introduction of the methyl group in the lactone D-ring. Reduction of 23c with either Pd/C/H2 or Zn/ AcOH¹⁴ led to the reduced/dechlorinated product 24 in excellent yields. Hydrogenation was rather scale limited, as it required an excess of Pd/C to effect complete reduction. It was interesting to note that hydrogenation of 23c with 10% Pd/C was slow and led to significant epimerization at the keto-stereocenter in 24. More reproducible results were obtained with a Zn/AcOH reduction on various scales (0.5-0.8 g). The key to success with this latter reduction was to keep reaction times ≤ 1 h as prolonged reactions led to lower yields with the formation of unidentified high molecular weight compounds-perhaps through further acid-catalyzed aldol-type dimerization reactions of 24. Considerable time was then spent investigating a variety of methods to reduce the ketone in 24 to the corresponding methylene, initially opting for a reduction/Barton-McCombie strategy. Preliminary attempts to selectively reduce the ketone in 24 with a variety of well-known metal hydride reagents were met with low yields and competing lactone reduction. Eventually, it was found that quantitative reduction to alcohol 25 could be achieved using LiAl(O'Bu)₃H.²⁶ Attempts were then made

⁽²⁵⁾ Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.; Berry, M. B.; Booker-Milburn, K. I. J. Org. Chem. 2005, 70, 7558.

SCHEME 4. Completion of the Total Synthesis of (\pm) -Neostenine 5^{*a*}

^{*a*} Reagents and conditions: (a) Zn, AcOH, 1 h; (b) Pd/C/H₂, K₂CO₃, MeOH, 1 atm; (c) LiAl(O'Bu)₃H, THF, 0 °C, 3 h; (d) (1) MsCl, Et₃N, THF; (2) LiAlH₄, THF, reflux; (e) 5% InCl₃, ClPh₂SiH, CH₂Cl₂, reflux, 16 h; (f) PhOCSCl, DMAP (1.5 equiv), CH₂Cl₂, reflux, 7 h; (g) Bu₃SnH, AIBN, C₆H₆, reflux, 30 min; (h) (1) LHMDS, MeI, THF, -78 °C (95%; $\alpha/\beta = 1/7$); (2) LHMDS, BHT, THF, -78 °C to rt (70%; $\alpha/\beta = 5/1$); (i) 5% RhH(CO)(PPh₃)₃, Ph₂SiH₂, THF, 30 min.

to convert 25 to suitable thiocarbonyl derivatives for Bu₃SnHmediated deoxygenation using various reported reagent combinations and conditions. Unfortunately, all of these were met with failure, and only starting alcohol was recovered. It was clear that the hydroxyl group in 25 was very hindered, and a different reduction strategy was sought. Eventually, conditions were found where 25 could be converted to the corresponding mesylate; however, reduction with excess LiAlH₄ gave only triol amine 26 where the key alkoxy bond had remained intact. This was very likely a result of S-O cleavage due to shielding of the C-OMs bond by the concave environment of the ABC ring skeleton. It had been reported by Baba²⁷ that secondary alcohols could be reduced to alkanes by a Ph₂SiHCl/InCl₃ reductive protocol. To our surprise, the sole product isolated from this attempted reduction was inverted alcohol epimer 27 in quantitative yield. Clearly, reductive C-O cleavage had not taken place, and further investigations are ongoing to elucidate the mechanism and generality of this interesting inversion process. Investigations using a number of other techniques for the deoxygenation of 24 including Clemmensen, modified Shapiro, thioacetal formation then RaNi or Bu₃SnH, and enol triflate/ phosphate then hydrogenation were unsuccessful, with many problems occurring during derivitization.

At this point, it was decided to return to the Barton–McCombie deoxygenation strategy and investigate more reactive conditions for thiocarbonate formation. Eventually, it was found that reaction of **25** with PhOCSCl with 1.5 equiv of DMAP²⁸ in refluxing CH_2Cl_2 led to the formation of the hindered thiocarbonate **28**. Unfortunately, **28** proved to be unstable to prolonged

heating under the reaction conditions, and it was found that it was best to isolate this after 7 h (67%) and recover the unreacted starting material (29%) to recycle. Treatment of 28 under standard Bu₃SnH/AIBN conditions gave the long sought after deoxygenated lactone-amide 29 in excellent yield. Methylation of 29 with LHMDS/MeI gave methyl lactones 30 as a 7:1 mixture of epimers in favor of the unnatural β -epimer (95%). This was not unexpected, as simple molecular models of the enolate of 30 suggested that alkylation may proceed from the more accessible β -face (rear). We then investigated epimerization via an enolization/protonation sequence from the β -face. Pleasingly, treatment of the enolate of 30 with 10 equiv of 2,6di-tert-butyl-4-methylphenol²⁹ (BHT) gave oxoneostenine 30 as a 5:1 mixture of α/β -epimers. Finally, reduction of purified (crystallization) 30α to (±)-neostenine 5 was conveniently achieved, in one step, using a selective amide reduction with RhH(CO)(PPh₃)₃/Ph₂SiH₂ under conditions described by Ito.³⁰ These very selective conditions were particularly attractive as all previous Stenine alkaloid syntheses have adopted a twostep thionation/Ra-Ni reduction endgame to reduce the 7-membered amide. As such, this result highlights the usefulness of this catalyst/reagent combination for the reduction of amides in the presence of other metal hydride sensitive functionality (Scheme 4).

Conclusion

A unique total synthesis of (\pm) -neostenine **5** has been achieved in 14 linear steps from furan, in a strategy devoid of standard protection/deprotection protocols. Key findings include a novel approach to C_2 -symmetric bislactones via the acid-

^{(26) (}a) Danishefsky, S.; Kitahara, T.; Schuda, P. F.; Etheredge, S. J. J. Am. Chem. Soc. **1976**, 98, 3028. (b) Danishefsky, S.; Schuda, P. F.; Kitahara, T.; Etheredge, S. J. J. Am. Chem. Soc. **1977**, 99, 6066.

⁽²⁷⁾ Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. J. Org. Chem. 2001, 66, 7741.

⁽²⁸⁾ Barton, D. H. R.; Jaszberenyi, J. Cs. Tetrahedron. Lett. 1989, 30, 2619.

⁽²⁹⁾ Yanagisawa, A.; Watanabe, T.; Kikuchi, T.; Yamamoto, H. J. Org. Chem. 2000, 65, 2979.

⁽³⁰⁾ Kuwano, R.; Takahashi, M.; Ito, Y. Tetrahedron. Lett. 1998, 39, 1017.

JOC Featured Article

catalyzed bislactonization of bridged bicyclic dihydrofuran acids. The C_2 -symmetric bislactones have been shown to be useful substrates for the anti-selective EtMgCl/CuBr·DMS-mediated S_N2' ring opening to the neostenine C,D-ring system. Contrary to literature conditions, this organocopper ring opening gave the best selectivities in the absence of any additives such as DMS or DMPU. The key to this synthesis was the application of our [5 + 2] photocycloaddition maleimide reaction. This allowed the construction of the perhydroazaazulene A,B-rings and furnished the tetracyclic neostenine ring system in a single step. Crucial to the success of this, however, has been the novel application of our continuous FEP photochemical flow reactor technology. Adopting a high flow rate/low volume reactor topology coupled with a high power UV source has allowed the scale up of a key photochemical reaction that was severely limited in batch and thus unsustainable in our original route. We believe that our findings may stimulate others to adopt flow reactors for similarly sensitive or scale-compromised photoreactions. Present studies are concerned with adaptation of our current chemistry to provide concise routes to neotuberostemonine 5 and bisdehydroneotuberostemonine 6.

Experimental Section

(±)-(1R,2S,3S,4S)-7-Oxabicyclo[2.2.1]hept-5-ene-2,3-diyldimethanol (19).²⁰ Fumaryl chloride (95%, 80.48 g, 500 mmol) was added dropwise to furan (34.03 g, 500 mmol) over a period of 30 min at 0 °C. The mixture was stirred for a further 1 h, at which point the reaction mixture had solidified. THF (500 mL) was added, and the resulting solution was added dropwise to a solution of LiAlH₄ (438 mL, 2.4 M in THF, 1050 mmol) in THF (750 mL) at 0 °C, allowed to warm to rt, and stirred for 48 h. The reaction mixture was carefully quenched by addition of NaOH (2 M, 200 mL) at 0 °C, stirred for 4 h, allowed to warm to rt, filtered through Celite, and washed with THF (8 \times 600 mL) and then THF/MeOH (4:1, 4 \times 400 mL). The combined organic extracts were concentrated in vacuo and subjected to column chromatography (10% MeOH in EtOAc) to yield **19** (56.2 g, 72%) as a yellow oil: IR (film) 3338, 2926, 1318, 1083, 1029, 981 cm⁻¹; ¹H (400 MHz; CDCl₃) δ 1.43-1.47 (1H, m), 2.09-2.14 (1H, m), 2.51 (2H, s), 3.26 (1H, dd, J = 9.5)and 9.0 Hz), 3.52 (1H, dd, J = 10.0 and 6.5 Hz), 3.64 (1H, dd, J = 10.0 and 8.0 Hz), 3.79 (1H, dd, J = 10.0 and 6.5 Hz), 4.74 (1H, s), 4.95 (1H, d, J = 4.0 Hz), 6.31 (1H, dd, J = 6.0 and 1.0 Hz), 6.47 (1H, dd, J = 6.0 and 2.0 Hz); ¹³C (101 MHz; CDCl₃) δ 45.4 (CH₂), 46.4 (CH₂), 64.4 (CH), 65.0 (CH), 79.7 (CH), 80.6 (CH), 133.3 (CH), 136.8 (CH); m/z (E.I.) 155 (5, M⁺) 138 (20), 120 (26), 84 (65), 68 (100).

(±)-2,2'-((1R,2R,3R,4S)-7-Oxabicyclo[2.2.1]hept-5-ene-2,3-diyl)diacetonitrile (20). To a solution of 19 (19.2 g, 123 mmol) and Et₃N (51.4 mL, 369 mmol) in THF (500 mL) at 0 °C was added methanesulfonyl chloride (20.2 mL 27 mmol) dropwise over 20 min, and then the mixture was allowed to warm to rt and stirred for a further 2.5 h. Solvent was removed in vacuo and the residue partitioned between CH₂Cl₂ (500 mL) and water (300 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 150 mL), and the organic layers were combined, washed with brine (150 mL), dried over MgSO₄, and concentrated in vacuo to yield the bis-mesylate (38.1 g, 99%) as a labile, pale yellow oil which was used immediately in the proceeding step: IR (film) 1330, 1166, 954, 812 cm⁻¹; ¹H (270 MHz; CDCl₃) δ 1.63-1.70 (2H, m), 3.01 (3H, s), 3.03 (3H, s), 3.88 (1H, dd, J = 9.9 and 9.6 Hz), 4.11 (1H, dd, J = 10.2 and 6.9 Hz), 4.20-4.33 (2 H, m), 4.81 (1H, s), 5.01 (1H, d, J = 4.0), 6.40 (1H, dd, J = 5.9 and 1.7 Hz), 6.50 (1H, dd, J = 5.9and 1.7 Hz); ¹³C (101 MHz; CDCl₃) & 37.6 (2 × CH₃), 42.7 (CH), 43.0 (CH), 70.2 (CH₂), 71.2 (CH₂), 79.5 (CH), 79.9 (CH), 133.8 (CH), 136.8 (CH); m/z (C.I.) 313 (22, $[M + H]^+$) 217 (27), 149 (65), 121 (100), 93 (46); HRMS found $[M + H]^+$, 313.0419, C₁₀H₁₇O₇S₂ requires 313.0416.

Potassium cyanide (3.1 g, 48.0 mmol) was added in one portion to a solution of the freshly prepared bis-mesylate (5.0 g, 16.0 mmol) in DMSO (128 mL) and heated to 100 °C for 4 h. After being cooled to rt, the reaction mixture was extracted with Et₂O/THF (1:1), $(3 \times 100 \text{ mL})$, the organic layers were combined concentrated in vacuo and partitioned between Et₂O (150 mL) and water (150 mL), and the aqueous layer was extracted with further Et₂O (3 \times 100 mL). The organic layers were combined, dried over MgSO₄, concentrated in vacuo, and subjected to column chromatography (10% MeCN in CH_2Cl_2) to yield **20** (2.3 g, 84%) as a pale yellow oil: IR (film) 2248, 1424, 1353, 1326, 1173, 1002, 885 cm⁻¹; ¹H (400 MHz; CDCl₃) δ 1.58 (1H, dt, J = 7.6 and 3.5 Hz), 2.06–2.12 (1H, m), 2.18 (1H, dd, J = 16.6 and 8.3 Hz), 2.34 (1H, dd, J = 16.6 and 7.3 Hz), 2.53 (1H, dd, J = 16.6 and 8.3 Hz), 2.60 (1H, dd, J = 16.6 and 7.3 Hz), 4.73 (1H, s), 5.01 (1H, d, J = 4.4 Hz), 6.40 (1H, dd, J = 6.0 and 1.6 Hz), 6.56 (1H, dd, J = 5.9 and 1.7 Hz); ¹³C (101 MHz; CDCl₃) δ 19.9 (CH₂), 21.7 (CH₂), 41.8 (CH), 42.0 (CH), 80.6 (CH), 82.5 (CH), 118.0 (CH), 118.6 (CH), 133.3 (CH), 137.6 (CH); *m*/*z* (C.I.) 175 (31, [M + H]⁺) 148 (97), 134 (48), 121 (20), 107 (100), 80 (94); HRMS found [M + H]⁺, 175.0865, C₁₀H₁₁N₂O requires 175.0871.

(±)-2,2'-((1R,2R,3R,4S)-7-Oxabicyclo[2.2.1]hept-5-ene-2,3-diyl)diacetic Acid (18). The dinitrile 20 (9.7 g, 55.7 mmol) was heated to reflux for 4 h in aqueous potassium hydroxide solution (1.27 M). After completion, the reaction was allowed to cool, acidified to pH 1 with HCl (2 M), and extracted with EtOAc (3×300 mL). The combined organic fractions were dried over MgSO4 and concentrated in vacuo to yield 18 (11.0 g, 93%) as a colorless powder: mp 124–126 °C; IR (film) 3012, 1707, 1409 and 891 cm⁻¹; ¹H (270 MHz; CD₃OD) δ 1.49–1.56 (1H, m), 1.98–2.16 (2H, m), 2.31–2.49 (2H, m), 2.63 (1H, dd, J = 16.5 and 6.6 Hz), 4.60 (1H, s), 4.94 (1H, d, J = 4.0 Hz), 6.34 (1H, dd, J = 5.9 and 1.3 Hz), 6.50 (1H, dd, J = 5.9 and 1.7 Hz); ¹³C (101 MHz; CD₃OD) δ 39.0 (CH₂), 40.3 (CH₂), 43.1 (CH), 43.7 (CH), 83.2 (CH), 85.1 (CH), 135.5 (CH), 138.7 (CH), 177.1 (CH), 177.5 (CH); m/z (C.I.) 213 $(43, [M + H]^+)$ 195 (47), 149 (60), 121 (36), 99 (92), 81 (44); HRMS found $[M + H]^+$, 213.0765, $C_{10}H_{13}O_5$ requires 213.0763. Anal. Calcd for C₁₀H₁₃O₅: C, 56.76; H, 5.75. Found: C, 56.60; H, 5.70

(±)-(3aR,5aR,8aS,8bS)-1,8,8a,8b-Tetrahydrobenzofuro[5,4-*b*]furan-2,7-(3aH,5aH)-dione (17). (a) A solution of 18 (11.0 g, 51.8 mmol) and *p*-TSA (2.5 g, 13.0 mmol) in toluene (300 mL) was heated to reflux for 3 h. After the solution was allowed to cool, it concentrated in vacuo and triturated using CH₂Cl₂ (150 mL) to yield 17 (9.4 g, 93%) as a colorless solid: 210 °C dec; IR (film) 1755, 1421, 1317, 1187, 1175, 1003, 984 cm⁻¹; ¹H (270 MHz; CD₃OD) δ 2.44 (2H, dd, *J* = 17.5 and 8.6 Hz), 2.69 (2H, dd, *J* = 17.5 and 8.3 Hz), 2.87–2.98 (2H, m), 5.08 (2H, dd, *J* = 5.9 and 1.3 Hz), 6.10 (2H, d, *J* = 1.7 Hz); ¹³C (101 MHz; CDCl₃) δ 32.8 (CH₂), 34.6 (CH), 72.6 (CH), 127.5 (CH), 177.5 (CH); *m*/*z* (C.I.) 195 (70, [M + H]⁺) 177 (17), 149 (100), 135 (57), 121 (43); HRMS found [M + H]⁺, 195.0667, C₁₀H₁₁O₄ requires 195.0657. Anal. Calcd for C₁₀H₁₁O₄: C, 61.85; H, 5.19. Found: C, 62.10; H, 5.38.

(b) Compound **20** (420 mg, 2.4 mmol) was heated at reflux in 6 M sulfuric acid (7 mL) for 30 min. Water (20 mL) was added to the cooled reaction mixture extracted with CH_2Cl_2 (4 × 30 mL). The organic layers were combined, washed with brine (30 mL), dried over MgSO₄, concentrated in vacuo, and subjected to column chromatography (EtOAc/CH₂Cl₂ 1:2) to yield 17 (210 mg, 45%) as a colorless solid. The material was found to be identical in all aspects to that prepared in (a).

(\pm)-2-((3aS,4*R*,7*R*,7*aR*)-7-Ethyl-2-oxo-2,3,3a,4,7,7a-hexahydrobenzofuran-4-yl)acetic Acid (16). Copper bromide-dimethyl sulfide complex (18.51 g, 90 mmol) was placed in a 250 mL RBF equipped with a large magnetic stirring bar and covered with anhydrous THF (60 mL). Ethylmagnesium chloride (45 mL, 2 M in THF, 90 mmol) was added dropwise via syringe at -20 °C. After 30 min of stirring, 17 (5.82 g, 30 mmol) was added portionwise as a solid (best done out of a vial) over 5 min and stirring continued for a further 1 h while the reaction mixture was allowed to warm to 0 °C. HCl (2M, 50 mL) was then carefully added dropwise (gas formation). The organic solvent was then removed in vacuo and the residue diluted with HCl (2 M, 50 mL) and water (100 mL) and extracted with ethyl acetate (3 \times 200 mL). The combined organic layers were dried (MgSO₄), concentrated in vacuo, and dry-loaded onto SiO₂ (20 g). Purification by flash column chromatography (SiO₂ 100 g, hexane/EtOAc 1:1 and 1% AcOH) yielded a small amount of syn-16 as a colorless solid (0.4 g, 6%). Further elution gave anti-16 as a colorless solid (5.9 g, 88%): mp 106-109 °C; IR (film) 3109, 1770, 1731, 1705, 1416, 1158, 988, 726 cm⁻¹; ¹H (400 MHz; CDCl₃) δ 0.98 (3H, t, J = 7.3 Hz), 1.44–1.66 (2H, m), 2.20–2.26 (1H, m), 2.31-2.35 (1H, m), 2.36-2.45 (4H, m), 2.75 (1H, dd, J = 17.2 and 7.2 Hz), 4.66 (1H, t, J = 4.4 Hz), 5.58 (1H, d, J =10.3 Hz), 5.7s3 (1H, dt, J = 10.3 and 2.7 Hz), 11.54 (1H, s); ¹³C (101 MHz; CDCl₃) δ 11.8 (CH₃), 24.5 (CH₂), 34.4 (CH₂), 37.8 (CH), 38.4 (CH₂), 38.5 (CH), 38.9 (CH), 80.7 (CH), 127.9 (CH), 128.9 (CH), 177.3 (CH), 177.5 (CH); m/z (C.I.) 225 (56, [M + H]⁺), 207 (78), 179 (66), 165 (66), 133 (76), 119 (100); HRMS found $[M + H]^+$, 225.1126, $C_{12}H_{17}O_4$ requires 225.1127. Anal. Calcd for C₁₂H₁₇O₄: C, 64.27; H, 7.19. Found: C, 64.49; H, 7.41.

 (\pm) -(3aS,4R,7R,7aR)-7-Ethyl-4-(2-hydroxyethyl)-3a,4,7,7a-tetrahydrobenzofuran-2(3H)-one (21). Ethyl chloroformate (3.0 mL, 31.7 mmol) was added dropwise to a solution of 16 (4.7 g, 21.1 mmol) and Et₃N (8.9 mL, 63.4 mmol) in THF (200 mL) at -20°C and stirred for 30 min. A solution of sodium borohydride (8.0 g, 211.3 mmol) in water (105 mL) was cautiously added at -20 °C and the mixture allowed to warm to rt over 20 min with stirring. The reaction mixture was extracted with CH_2Cl_2 (3 × 200 mL), and the combined organic layers were dried over MgSO4, concentrated in vacuo, and subjected to column chromatography (EtOAc/ hexane 1:1) to yield 21 (3.9 g, 87%) as a pale yellow oil: IR (film) 3420, 1760, 1156, 1056, 907, 705 cm⁻¹; ¹H (270 MHz; CDCl₃) δ 1.02 (3H, t, *J* = 7.4 Hz), 1.41–1.73 (5H, m), 2.03–2.13 (1 H, m), 2.20-2.43 (3 H, m), 2.74 (1H, dd, J = 17.2 and 7.3 Hz), 3.72(2H, t, J = 6.4 Hz), 4.66 (1H, t, J = 4.5 Hz), 5.58 (1H, d, J =10.2), 5.70 (1H, dt, J = 10.2 and 3.0 Hz); ¹³C (101 MHz; CDCl₃) δ 11.9 (CH₃), 24.6 (CH₂), 34.5 (CH), 37.4 (CH₂), 38.1 (CH), 38.7 (CH₂), 38.9 (CH), 60.4 (CH₂), 80.8 (CH), 128.1 (CH), 129.0 (CH), 177.2 (C); *m/z* (C.I.) 211 (44, [M + H]⁺), 193 (88), 181 (40), 165 (46), 151 (68), 147 (76), 133 (100), 119 (42); HRMS found [M + H]⁺, 211.1325, C₁₂H₁₉O₃ requires 211.1334.

(±)-3,4-Dichloro-1-(2-((3aS,4R,7R,7aR)-7-ethyl-2-oxo-2,3,3a,4,7,7ahexahydrobenzofuran-4-yl)ethyl)-1H-pyrrole-2,5-dione (22c). Diisopropyl azodicarboxylate (2.6 mL, 13.0 mmol) was added to a cooled solution of triphenylphosphine (3.6 g, 13.6 mmol) in THF (120 mL) at -78 °C and stirred for 2 h, after which a pale yellow precipitate formed. A solution of 21 (3.0 g, 14.2 mmol) in THF (3 mL) was added dropwise and stirred for 15 min after which dichloromaleimide (1.6 g, 13.0 mmol) was added in one portion. The resulting yellow solution was stirred for 10 min and allowed to warm to rt over 16 h. The reaction mixture was concentrated in vacuo and subjected to column chromatography (Et₂O/hexane 4:1) to yield 22c (3.3 g, 71%) as pale yellow oil: IR (film) 1768, 1720, 1397, 1156, 877, 728 cm⁻¹; UV-vis (ν_{max}) 285 nm; ¹H (400 MHz; CDCl₃) δ 1.01 (3H, t, 7.3 Hz), 1.48–1.69 (3H, m), 1.79–1.86 (1H, m), 1.90–1.97 (1H, m), 2.19–2.26 (1H, m), 2.30 (1H, d, 17.2 Hz), 2.35-2.40 (1H, m), 2.76 (1H, dd, 16.8 and 7.3 Hz), 3.57-3.69 (2H, m), 4.67 (1H, t, 4.8 Hz), 5.61 (1H, d, 10.3 Hz), 5.70 (1H, dt, 10.3 and 2.9 Hz); ${}^{13}C$ (75 MHz; CDCl₃) δ 11.7 (CH₃), 24.4 (CH₂), 32.3 (CH₂), 35.3 (CH), 36.7 (CH₂), 37.9 (CH), 38.0 (CH), 38.4 (CH₂), 80.4 (CH), 127.5 (CH), 129.2 (CH), 133.4 (C), 162.9 (C), 176.5 (C); *m*/*z* CI 358 (8, [M + H]⁺), 342 (58), 340 (73), 314 (25) 312 (36), 300 (33), 298 (48), 193 (27), 175 (16), 147 (93), 133 (100), 119 (16), 108 (38), 95 (15), 79 (12); HRMS found [M + H]⁺, 358.0608, C₁₆H₁₈NO₄Cl₂ requires 358.0613.

Continuous Flow Photochemical Reactor. Flow reactors were constructed according to the literature method using between 15 and 20 loops of FEP tubing (2.7 mm inner diameter) wrapped

JOC Featured Article

around a water-cooled Pyrex immersion well.²⁴ The system was flushed with clean solvent before use. The substrate was dissolved in the stated solvent, and nitrogen was bubbled through the mixture for 5 min to remove dissolved oxygen. A 400 W medium-pressure mercury lamp was inserted into the well and switched on 5 min before commencing flow of the substrate solutions. Using a Masterflex peristaltic pump, the solution was pumped at the specified flow rate through the reactor system. After complete uptake of the substrate solution, a volume of clean solvent $2 \times$ the internal volume of the reactor was passed through the system and collected with the product solution before the lamp was turned off. The resulting mixtures were concentrated in vacuo and typically purified by column chromatography and/or recrystallization. Alternatively, the outflow tubing of the reactor can be connected to a rotary evaporator and the photosylate continuously evaporated as it exits the reactor.

(±)-(3¹S,7a*R*,8*R*,8a*S*,11a*S*,11b*S*)-5,6-Dichloro-8-ethyl-1,2, 8,8a,11,11a-hexahydroazepino[3,2,1-hi]furo[3,2-e]indole-4,7,10(3¹H,7aH,11bH)-trione (23c). A solution of 22c (2.1 g, 5.8 mmol) was dissolved in CH₂Cl₂ (5.8 L) and passed through a 15-loop FEP flow reactor (2 m of FEP tubing; 10 mL reactor volume) at 11 mL min⁻¹ (8 h 50 min) after which a further portion of CH₂Cl₂ (50 mL) was passed through the reactor. The combined photosylates were concentrated in vacuo and subjected to column chromatography (20% EtOAc in hexane) to yield recovered 22c as a pale yellow oil (0.4 g, 20%). Further elution gave 23c (1.3 g, 63%) as a colorless solid: 198 °C dec; IR (film) 1776, 1635, 1418, 1195, 1157, 906, 733 cm⁻¹; ¹H (400 MHz; CD₃Cl) δ 0.99 (3H, t, J = 7.3 Hz), 1.27–1.39 (1H, m), 1.55–1.67 (1H, m), 1.79–1.84 (1H, m), 1.96-2.12 (2H, m), 2.20-2.25 (1H, m), 2.27-2.32 (1H, m), 2.43 (1H, d, *J* = 17.3 Hz), 2.89 (1H, dd, *J* = 17.1 and 7.3 Hz), 3.27 (1H, dd, J = 12.5 and 3.2 Hz), 3.76-3.92 (2H, m), 4.11 (1H, dd, J = 4.6 and 3.4 Hz), 4.68 (1H, dd, J = 4.9 and 2.9 Hz); ¹³C (101 MHz; CD₃Cl) δ 11.0 (CH₃), 22.6 (CH₂), 28.0 (CH₂), 34.4 (CH), 36.3 (CH), 37.9 (CH₂), 42.5 (CH), 48.9 (CH₂), 49.7 (CH), 55.6 (CH), 78.0 (CH), 138.7 (C), 140.4 (C), 157.9 (C), 175.0 (C), 189.7 (C); *m/z* (C.I.) 358 (100, [M + H]⁺) 322 (70), 288 (30), 262 (12), 147 (18), 133 (24); HRMS found $[M + H]^+$, 358.0616, $C_{16}H_{18}NO_4Cl_2$ requires 358.0613.

 (\pm) -(3¹S,7aR,8R,8aS,11aS,11bS)-8-Ethyloctahydroazepino[3,2,1hi]furo[3,2-e]indole-4,7,10-(31H,7aH,11bH)-trione (24). Zinc powder (2.9 g, 44.8 mmol) was activated by stirring with glacial acetic acid (40 mL) for 20 min at rt. A solution of 23c (0.8 g, 2.2 mmol) in glacial acetic acid (28 mL) was added and stirred at rt for 1 h. The reaction mixture was then filtered through Celite, washed with EtOAc (3 \times 50 mL), concentrated in vacuo, and subjected to column chromatography (10% MeOH in EtOAc) to yield 24 (0.6 g, 95%) as a colorless solid: IR (film) 1771, 1702, 1631, 1423, 1178, 906 cm⁻¹; ¹H (400 MHz; CD₂Cl₂) δ 1.03 (3H, t, J = 7.2Hz), 1.15-1.32 (3H, m), 1.63 (1H, dd, J = 12.8 and 6.0 Hz), 1.90-2.00 (1H, m), 2.25 (1H, d, J = 16.5 Hz), 2.46-2.55 (3H, m), 2.58-2.68 (2H, m), 2.78-2.88 (2H, m), 2.94-3.04 (1H, m), 3.17 (1H, dt, J = 11.9 and 6.0 Hz), 3.99 (1H, dd, J = 11.8 and 7.1Hz), 4.07 (1H, d, *J* = 8.2 Hz), 4.94 (1H, dd, *J* = 8.4 and 6.8 Hz); ¹³C (101 MHz; CD₂Cl₂) δ 15.7 (CH₃), 20.7 (CH₂), 28.6 (CH₂), 32.7 (CH₂), 35.0 (CH₂), 35.6 (CH), 35.7 (CH₂), 41.5 (CH), 42.9 (CH), 45.3 (CH₂), 58.3 (CH), 79.5 (CH), 80.3 (CH), 172.0 (C), 178.0 (C), 207.3 (C); *m/z* (C.I.) 292 (100, [M + H]⁺) 274 (9), 246 (7), 232 (31), 147 (8), 133 (7); HRMS found [M + H]⁺, 292.1548, C₁₆H₂₂NO₄ requires 292.1549.

(\pm)-(3¹S,7S,7a*R*,8*R*,8aS,11aS,11bS)-8-Ethyl-7-hydroxydecahydroazepino[3,2,1-*hi*]furo[3,2-*e*]indole-4,10(3¹*H*,11b*H*)-dione (25). To a solution of 24 (71 mg, 0.24 mmol) in THF (25 mL) was added 1.0 M LiAl(O'Bu)₃H solution in THF (0.24 mL, 0.24 mmol) dropwise at 0 °C and the mixture allowed to stir at rt for 3 h. The reaction mixture was quenched by the dropwise addition of H₂O (0.3 mL) and allowed to stir for 30 min. The mixture was filtered through Celite, and the filter cake was washed with THF (5 × 15 mL). The solution was concentrated in vacuo onto silica gel and subjected to column chromatography (10% MeOH in CH_2Cl_2) to yield 25 (71 mg, 99%) as a colorless crystalline solid: IR (film) 3378, 1759, 1627, 906 cm⁻¹; ¹H (400 MHz; CD₂Cl₂) δ 0.94 (3H, t, J = 7.5 Hz), 1.43–1.54 (1H, m), 1.60 (1H, ddt, J = 12.5, 6.8 and 2.2 Hz), 1.73-1.94 (4H, m), 2.02 (1H, ddd, J = 14.2, 7.5 and 4.0 Hz), 2.06-2.17 (2H, m), 2.19-2.26 (1H, m), 2.31 (1H, dd, J = 17.3 and 1.5 Hz), 2.39 (1H, ddd, J = 15.6, 11.4 and 4.5 Hz), 2.63 (1H, ddd, J = 15.5, 6.1 and 3.7 Hz), 2.83 (1H, dd, J = 17.2 and 7.7 Hz), 3.36-3.46 (1H, m), 3.72-3.76 (1H, m), 3.79 (1H, dd, J = 5.4 and 2.7 Hz), 3.93 (1H, dt, J = 10.4 and 2.9 Hz), 4.75 (1H, dd, J = 5.4 and 2.4 Hz); ¹³C (101 MHz; CD₂Cl₂) δ 11.5 (CH₃), 21.5 (CH₂), 26.6 (CH₂), 28.8 (CH₂), 34.7 (CH), 35.6 (CH₂), 36.5 (CH), 38.4 (CH₂), 40.1 (CH), 43.5 (CH), 47.4 (CH₂), 59.7 (CH), 76.6 (CH), 80.0 (CH), 173.7 (C), 176.3 (C); m/z (C.I.) 294 (100, $[M + H]^+$) 276 (30), 265 (4), 234 (4), 216 (4), 192 (3); HRMS found $[M + H]^+$, 294.1704, C₁₆H₂₄NO₄ requires 294.1705.

 (\pm) - $(3^{1}S,7S,7aR,8R,8aS,11aS,11bS)$ -8-Ethyl-4,10-dioxotetradecahydroazepino[3,2,1-hi]furo[3,2-e]indol-7-yl Methanesulfonate. To a solution of 25 (70 mg, 0.24 mmol) and Et₃N (166 µL, 1.2 mol) in THF (20 mL) was added methanesulfonyl chloride (74 μ L, 0.96 mmol) dropwise at 0 °C and the mixture allowed to stir at rt for 5 min. The reaction mixture was concentrated in vacuo onto silica gel and subjected to column chromatography (5% MeOH in CH₂Cl₂) to give the mesylate 25a (89 mg, 99%) as a colorless crystalline solid: IR (film) 1773, 1628, 1461, 1350, 1170 cm⁻¹; ¹H (400 MHz; DMSO- d_6) δ 0.96 (3H, t, J = 7.3 Hz), 1.31–1.41 (1H, m), 1.54-1.58 (1H, m), 1.73-1.85 (3H, m), 1.93-2.06 (1H, m), 2.11-2.16 (3H, m), 2.33 (1H, d, J = 17.2 Hz), 2.44-2.54 (2H, m), 2.64 (1H, ddd, J = 15.5, 6.3 and 3.0 Hz), 2.91 (1H, dd, J = 17.2 and 7.6 Hz), 3.03 (3H, s), 3.40 (1H, m), 3.64 (1H, dd, *J* = 8.9 and 7.6 Hz), 3.92 (1H, dd, J = 4.5 and 2.5 Hz), 4.78 (1H, dd, J = 4.3 and 2.0 Hz), 4.88 (1H, dt, J = 10.8 and 3.2 Hz); ¹³C (101 MHz; DMSO-d₆) δ 11.6 (CH₃), 21.8 (CH₂), 24.9 (CH₂), 28.7 (CH₂), 32.1 (CH₂), 33.7 (CH), 34.9 (CH₂), 36.1 (CH), 38.2 (CH₂), 38.4 (CH), 43.3 (CH₃), 47.5 (CH₂), 58.7 (CH), 79.5 (CH), 85.5 (CH), 172.3 (C), 176.9 (C); *m*/*z* (C.I.) 371 (3, [M + H]⁺) 323 (35), 322 (56), 292 (28), 290 (44), 276 (70) 178 (48), 102 (73), 97 (100), 86 (52), 65 (52); HRMS found $[M + Na]^+$, 394.1308, $C_{17}H_{25}NaNO_6S$ requires 394.1295.

(±)-(31S,7S,7aR,8R,9S,10S,10aS)-8-Ethyl-10-(2-hydroxyethyl)dodecahydroazepino[3,2,1-hi]indole-7,9-diol (26). To a slurry of LiAlH₄ (100 mg, 2.6 mmol) in THF (10 mL) was added 25a (125 mg, 0.34 mmol) at 0 °C and then heated at reflux for 1 h. The reaction mixture was quenched with water (0.1 mL), 15% NaOH (0.1 mL), and additional water (0.3 mL). After 1 h, the mixture was filtered through Celite, and the filter cake was washed with THF (5 \times 10 mL), concentrated in vacuo onto silica gel, and subjected to column chromatography (CH₂Cl₂/MeOH/NH₃ 200:8: 1) to give 26 (39 mg, 39%) as a colorless oil: IR (film) 3364, 1119 and 972 cm⁻¹; ¹H (400 MHz; D₃OD) δ 0.94 (3H, t, J = 7.3 Hz), 1.33-1.43 (2H, m), 1.52-1.80 (7H, m), 1.84-2.00 (4H, m), 2.10-2.17 (1H, m), 2.43-2.50 (2H, m), 2.70-2.75 (1H, m), 2.89 (1H, dt, J = 12.2 and 4.3 Hz), 3.10 (1H, dt, J = 10.5 and 7.2 Hz), 3.56-3.73 (2H, m), 3.93 (1H, t, J = 1.8 Hz), 4.09 (1H, dt, J = 8.6 and 3.1 Hz); ${}^{13}C$ (101 MHz; D₃OD) δ 10.7 (CH₃), 21.7 (CH₂), 22.9 (CH₂), 27.8 (CH₂), 30.3 (CH₂), 32.9 (CH₂), 39.5 (CH), 41.0 (CH), 41.5 (CH), 42.7 (CH), 55.4 (CH₂), 59.2 (CH₂), 66.5 (CH), 68.8 (CH), 70.5 (CH); m/z (C.I.) 284 (9, [M + H]⁺) 266 (16), 115 (30), 79 (100); HRMS found $[M + H]^+$, 284.2216, $C_{16}H_{30}NO_3$ requires 284.2226.

(\pm)-(3¹S,7R,7aR,8R,8aS,11aS,11bS)-8-Ethyl-7-hydroxydecahydroazepino[3,2,1-*hi*]furo[3,2-*e*]indole-4,10(3¹H,11bH)-dione (27). To a solution of 25 (10 mg, 0.03 mmol) and chloro(diphenyl)silane (16 μ L, 0.07 mmol) in CH₂Cl₂ (1 mL) was added InCl₃ (0.4 mg, 5 mol%) stirred at reflux for 16 h. The reaction mixture was allowed to cool to rt at which point a precipitate was observed. The reaction mixture was filtered and the solid washed with CH₂Cl₂ (3 × 2 mL). The solid was dissolved in acetone (15 mL) and filtered, and the filtrate was then concentrated in vacuo to give 27 (10 mg, 99%) as a colorless crystalline solid: IR (film) 3087, 1755, 1686, 1249, 1155, 913 cm⁻¹; ¹H (400 MHz; CD₃C(O)) δ 1.05 (3H, t, J = 7.3 Hz), 1.49–1.59 (1H, m), 1.91–1.99 (1H, m), 2.15–2.24 (2H, m), 2.34–2.54 (7H, m), 2.46 (1H, d, J = 16.9 Hz), 2.68–2.78 (1H, m), 2.98 (1H, dd, J = 16.9 and 6.4 Hz), 3.77–3.92 (2H, m), 4.43–4.49 (1H, m), 4.86 (1H, dd, J = 3.7 and 3.4 Hz), 5.06 (1H, ddd, J = 10.3, 6.1, and 2.9 Hz); ¹³C (101 MHz; CD₃C(O)) δ 10.6 (CH₃), 21.5 (CH₂), 25.8 (CH₂), 28.1 (CH₂), 29.9 (CH₂), 34.4 (CH), 35.5 (CH), 36.5 (CH), 175.0 (C), 175.6 (C); *m/z* (C.I.) 294 (100, [M + H]⁺) 276 (48), 250 (6), 232 (9), 216 (8), 115 (75), 99 (5), 95 (13), 79 (46), 59 (90); HRMS found [M + H]⁺, 294.1692, C₁₆H₂₄NO₄ requires 294.1705.

(±)-O-(3¹S,7S,7aR,8R,8aS,11aS,11bS)-8-Ethyl-4,10-dioxotetradecahydroazepino[3,2,1-hi]furo[3,2-e]indol-7-yl O-Phenyl Carbonothioate (28). To a solution of 25 (175 mg, 0.6 mmol) and DMAP (112 mg, 0.9 mmol) in CH₂Cl₂ (20 mL) was added o-phenyl chlorothionoformate (98 μ L, 0.7 mmol) dropwise and the mixture allowed to stir at reflux for 7 h 15 min. The reaction mixture was concentrated in vacuo onto silica gel and subjected to column chromatography (2% MeOH in CH2Cl2) to yield 28 (172 mg, 67%) as a colorless crystalline solid (mp 209-210 °C) and recovered 25 (51 mg, 29%): IR (film) 1776, 1623, 1576, 1403, 1294, 1194 cm⁻¹; ¹H (400 MHz; CDCl₃) δ 0.98 (3H, t, J = 7.3 Hz), 1.46–1.56 (1H, m), 1.63 (1H, dd, J = 12.5, and 6.4 Hz), 1.78–1.97 (3H, m), 2.07-2.21 (4H, m), 2.38 (1H, d, J = 17.1 Hz), 2.48-2.56 (1H, m), 2.57–2.65 (1H, m), 2.79–2.90 (2H, m), 3.49 (1H, dt, J = 11.9 and 6.4 Hz), 3.86-3.91 (2H, m), 4.73 (1H, dd, J = 3.9 and 2.2), 5.49 (1H, dt, J = 7.0 and 3.2 Hz), 7.11 (2H, dd, J = 8.4 and 1.1 Hz), 7.27-7.33 (1H, m), 7.39-7.46 (2H, m); ¹³C (101 MHz; CDCl₃) & 11.4 (CH₃), 21.3 (CH₂), 23.3 (CH₂), 28.5 (CH₂), 34.1 (CH₂), 35.5 (CH), 36.7 (CH), 37.6 (CH), 38.4 (CH₂), 43.7 (CH), 47.7 (CH₂), 59.7 (CH), 79.6 (CH), 87.8 (CH), 122.0 (CH), 126.8 (CH), 129.7 (CH), 153.3 (C), 172.9 (C), 176.0 (C), 193.8 (C); HRMS found $[M + Na]^+$ 452.1495, $C_{23}H_{28}NaNO_5S$ requires 452.1502.

 (\pm) - $(3^1R,7aR,8R,8aR,11aS,11bS)$ -8-Ethyldecahydroazepino[3,2,1*hi*]furo[3,2-*e*]indole-4,10(3¹H,11bH)-dione (29). A solution of 28 (143 mg, 0.33 mmol), AIBN (16 mg, 0.11 mmol), and tributyltin hydride (181 µL, 0.66 mmol) in benzene (12 mL) was heated at reflux for 30 min. The cooled reaction mixture was concentrated in vacuo onto silica gel and subjected to column chromatography (1% MeOH in CH_2Cl_2) to give **29** (87 mg, 94%) as a colorless crystalline solid after recrystallization from EtOAc (mp 172-173 °C): IR (film) 1765, 1617, 1430, 1263, 1008 cm⁻¹; ¹H (300 MHz; CDCl₃) δ 0.97 (3H, t, J = 7.3 Hz), 1.27–1.43 (1H, m) 1.44–1.73 (6H, m), 1.76–1.91 (1H, m), 2.02–2.20 (4H, m), 2.33 (1H, d, J = 16.9 Hz), 2.26-2.39 (1H, m), 2.64-2.74 (1H, m), 2.81 (1H, dd, J = 16.9 and 6.9 Hz), 3.40 (1H, dt, J = 11.9 and 6.2 Hz), 3.77 (1H, dd, J = 4.8 and 2.0 Hz), 3.90 (1H, dd, J = 12.3 and 8.4 Hz), 4.65 (1H, dd, J = 4.5 and 2.4 Hz); ¹³C (101 MHz; CD₃CO) δ 11.2 (CH₃), 17.8 (CH₂), 20.9 (CH₂), 28.4 (CH₂), 31.0 (CH₂), 33.4 (CH), 33.7 (CH), 37.1 (CH), 38.7 (CH₂), 39.7 (CH₂), 43.5 (CH), 47.5 (CH₂), 61.8 (CH), 80.1 (CH), 175.2 (C), 176.4 (C); m/z (C.I.) 278 (100, $[M + H]^+$), 233 (4), and 218 (3); HRMS found $[M + H]^+$, 278.1753, C₁₆H₂₄NO₃ requires 278.1756.

(±)-(3¹*R*,7*aR*,8*R*,8*a*,11*R*,11*aR*,11*bS*)-8-Ethyl-11-methyldecahydroazepino[3,2,1-*hi*]furo[3,2-*e*]indole-4,10(3¹*H*,11*bH*)-dione (30*β*). To a solution of **29** (112 mg, 0.41 mmol) in THF (20 mL) at -78 °C was added LiHMDS (0.43 mL, 0.43 mmol) dropwise and the mixture allowed to stir at -78 °C for 1 h. Iodomethane (76 µL, 1.2 mmol) was added dropwise at -78 °C and the mixture allowed to stir for 2 h. The reaction mixture was quenched with IPA (2 mL) and allowed to warm to rt over 30 min. The reaction mixture was concentrated in vacuo onto silica gel and subjected to column chromatography using (1% MeOH in CH₂Cl₂) to give **30** (112 mg, 95%) as a colorless crystalline solid as a 1:7 mixture of α/β-epimers. Major isomer: ¹H (400 MHz; CDCl₃) δ 0.95 (3H, t, *J* = 7.2 Hz), 1.28–1.38 (1H, m), 1.32 (3H, d, *J* = 7.6 Hz), 1.46–1.62 (6H, m), 1.78–1.89 (2H, m), 1.92–2.04 (2H, m), 2.08–2.16 (1H, m), 2.33 (1 H, ddd, J = 15.0, 10.9 and 3.9 Hz), 2.43 (1H, dq, J = 7.6 and 2.0 Hz), 2.59–2.67 (1H, m), 3.37 (1H, ddd, J = 12.2, 10.4 and 6.7 Hz), 3.75–3.85 (2H, m), 4.76 (1H, dd, J = 5.5 and 2.6 Hz); ¹³C (101 MHz; CDCl₃) δ 11.0 (CH₃), 15.3 (CH₃), 17.6 (CH₂), 20.6 (CH₂), 28.5 (CH₂), 30.2 (CH₂), 33.4 (CH), 33.9 (CH), 38.8 (CH₂), 42.9 (CH), 43.6 (CH), 44.6 (CH), 46.9 (CH₂), 60.8 (CH), 77.3 (CH), 174.5 (C), 179.2 (C).

(±)-(3¹*R*,7a*R*,8*R*,8a*R*,11*S*,11a*R*,11b*S*)-8-Ethyl-11-methyldecahydroazepino[3,2,1-*hi*]furo[3,2-*e*]indole-4,10(3¹*H*,11b*H*)-dione (30α). LiHMDS (0.42 mL, 0.42 mmol) was added dropwise to a stirred solution of $30\alpha/\beta$ (1:7) (112 mg, 0.38 mmol) in THF (30 mL) at -78 °C. After 10 min, the reaction mixture was allowed to warm to rt for 15 min and then cooled back down to -78 °C. A 1 M solution of BHT (3.8 mL, 3.8 mmol) was added dropwise at -78 °C and the mixture allowed to stir for 2 h. The reaction mixture was warmed to rt, then concentrated in vacuo onto silica gel, and subjected to column chromatography (1% MeOH in CH2Cl2) to give a mixture of $30\alpha/\beta$ (5:1) (78 mg, 70%) (mp 167–169 °C). This was then recrystallized from EtOAc to give pure 30α as a colorless crystalline solid: IR (film) 1769, 1630, 1423, 1168, 978 cm⁻¹; ¹H (400 MHz; CDCl₃) δ 0.99 (3H, t, J = 7.3 Hz), 1.29 (3H, d, J = 7.3 Hz), 1.31-1.74 (7H, m), 1.80-1.93 (1H, m), 2.06-2.22 (4H, m), 2.30–2.38 (1H, m), 2.73 (1H, dd, *J* = 16.4 and 6.8 Hz), 2.95 (1H, quin, J = 6.6 Hz), 3.41 (1H, dt, J = 12.2 and 6.1 Hz), 3.79 (1H, dd, J = 4.4 and 1.95 Hz), 3.94 (1H, dd, J = 12.3 and 8.4 Hz), 4.58 (1H, t, J = 3.1 Hz); ¹³C (101 MHz; CDCl₃) 9.6 (CH₃), 11.2 (CH₃), 17.8 (CH₂), 20.7 (CH₂), 29.3 (CH₂), 31.2 (CH₂), 33.4 (CH), 33.5 (CH), 38.5 (CH), 39.9 (CH₂), 40.7 (CH), 42.2 (CH), 47.4 (CH₂), 62.1 (CH), 78.4 (CH), 175.3 (C), 178.8 (C); m/z (C.I.) 292 (100, [M + H]⁺), 278 (2), 247 (4), 218 (9); HRMS found [M + H]⁺, 292.1909, C₁₇H₂₆NO₃ requires 292.1913.

(\pm)-Neostenine (5). RhH(CO)(PPh₃)₃ (6 mg, 5 mol %) was added in a single portion to a solution of **30** α (35 mg, 0.1 mmol) and

JOC Featured Article

diphenylsilane (44 μ L, 0.23 mmol) in THF (4 mL) and the mixture allowed to stir for 30 min. The reaction mixture was loaded directly onto an IST CBA cartridge (1 g, 0.7 mmol) and washed with MeCN $(2 \times 5 \text{ mL})$. Then cartridge was then eluted with $2 \times 5 \text{ mL}$ volumes of a Et₃N/MeCN solution (1/3 v/v). The eluent was concentrated in vacuo to give (\pm) -neostenine 5 (23 mg, 70%) as a colorless crystalline solid which was recrystallized from EtOAc: mp 122-123 °C (lit.² mp 90–92 °C; lit.¹¹ 126–128 °C); IR (film) 1765, 1171, 953 cm⁻¹; ¹H (400 MHz; CD₃Cl) δ 0.99 (3H, t, J = 7.5 Hz), 1.21 (3H, d, J = 7.5 Hz), 1.36-1.48 (2H, m), 1.57-1.91 (10H, m),1.92-2.04 (1H, m), 2.23-2.48 (4H, m), 2.81-2.90 (2H, m), 3.17-3.25 (1H, m), 4.51 (1H, dd, J = 4.0 and 2.5 Hz); ¹³C (101) MHz; CD₃Cl) δ 10.1 (CH₃), 11.3 (CH₃), 21.1 (CH₂), 21.2 (CH₂), 28.1 (CH₂), 28.4 (CH₂), 30.2 (CH₂), 34.3 (CH), 37.3 (CH), 37.4 (CH), 42.5 (CH), 42.9 (CH), 55.6 (CH₂), 55.9 (CH₂), 70.9 (CH), 79.3 (CH), 179.6 (C); m/z (C.I.) 278 (100, $[M + H]^+$), 233 (8), 204 (10), 191 (7); HRMS found $[M + H]^+$, 278.2116, $C_{17}H_{28}NO_2$ requires 278.2120.

Acknowledgment. We thank the EPSRC for generous funding of this program (EP/C51890X/1). We are grateful to Prof. Jeff Aubé (University of Kansas) for confirmation of the spectral details of synthetic neostenine and for sharing details of his own synthetic studies with us prior to publication. We thank Dr. Craig Butts (University of Bristol) for high-field NMR experiments.

Supporting Information Available: Copies of ¹H/¹³C spectra of all new compounds and the X-ray crystallographic files (CIF) for **23b**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO801108H